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NUMERICAL VARIATIONAL ANALYSIS WITH WEAK CONSTRAINT 
AND APPLICATION TO SURFACE ANALYSIS OF SEVERE STORM GUST 

Y O S H I K A Z U  SASAKI  
The University of Oklahoma, Norman, Okla .  

ABSTRACT 

An investigation of the numerical variational analysis method is made for a case of “weak constraint” where 
the subsidiary condition is given in the form of an approximation. The simple example of a system moving with 
an optimized velocity is used t o  illustrate the theoretical development. The method is applied to analysis of the 
National Severe Storms Laboratory mesonetwork data of the severe storm gust that  passed over the network on 
May 31, 1969. 

1. INTRODUCTION 

I n  articles published previously on numerical variational 
analysis (Sasaki 1958, 1969a, 1969b) and in the accom- 
panying articles (Sasaki 1970a, 1970b), dynamical con- 
straints consistent with a numerical prediction model were 

- used in the analysis. The author sought to satisfy these 
constraints exactly within a certain numerical accuracy. 
However, there are many phenomena for which our 
knowledge is insufficient to formulate rigorous dynamical 
and mathematical models. For example, problems as- 
sociated with mesoscale phenomena are those for which 
empirical rules have played greater roles than rigorous 
dynamical and mathematical rules in understanding and 
forecasting the phenomena. 

Suppose that a storm is moving with a translation 
velocity over an area where surface meteorological data 
are the best available. There is, to the author’s knowledge, 
no dynamical and mathematical model that is capable 
of describing accurately the surface patterns and their time 
changes. However, translation of the patterns with a cer- 
tain constant velocity in a reasonably short period has 
been one of the most widely used empirical rules in inter- 
polating values between observations in time and space and 
in making short-range forecasts of the order of 10 min. 

The numerical variational analysis method seems to  
offer an organized approach to such a problem. The 
dynamical constraints employed in the author’s previous 
papers can be easily extended to include empirical con- 
straints or approximate subsidiary conditions. This ex- 
tension seems to be especially important for phenomena 
about which the dynamics is poorly understood. This 
article intends to demonstrate the capability of the method 
in handling such empirical rules as constraints and in 
using dynamical constraint in approximation. 

2. WEAK DYNAMICAL CONSTRAINT 

. The dynamical constraint of the linear advection 
equation is assumed to be given by 

which is written in a form of the finite-difference equation 

v 1 cp fCzV,cp= 0 ( 2 )  

where cp is a meteorological variable and c, is the advection 
speed in the x direction. The finite-difference operators V,  
and V, are defined on a grid system 

and 

%+l --(on- 1 

2At 

(Pi+ 1 --‘pi - 1 
v z  Q= - 2 8 2 ’  

V1cp= 

(3) 

The time and space increments between consecutive 
points in the t-x space are denoted by At and Ax, respec- 
tively, and cp is assigned a t  all grid points. The nth time 
level is represented by the subscript n and i th grid point 
in the x direction is denoted with the subscript i. The 
subscripts are integers. 

There are various types of formalisms in numerical 
variational analysis based on the constraint (2). They 
may be classified into three basic types (Sasaki 1970~).  

The first formalism is written in the form 

6J=6 { Z(cp-?)’+c~, ( ~ l c p ) ~ ) = O  (4) 
n.i 

where J is a functional defined as Z( 1 and Z and a1 
are the weighting factors. The first term is the universal 
one that minimizes the difference between the observed 
and analyzed values, and the second is the term filtering 
out high-frequency modes that are unnecessary in the 
analyzed field. The variational eq (4) is solved with 
constraint ( 2 ) .  This formalism was discussed in detail in 
the author’s articles (1969a, 1969b, 1970b). 

Another formalism is orthodox and is expressed by the 
equation of variation 

6J=6 C {c(~-F>’++x ( ~ t c p f c z ~ z c p )  } = O  (5) 

where X is the Lagrange multiplier to which 6 should be 
operated (Courant and Hilbert 1953). This formalism is 
discussed in Sasaki (1970a). 

n,i 
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In  the above formalisms, constraint (2) should be 
satisfied exactly. In  contrast, there are a number of 
cases where constraint (2) is approximately satisfied. 
Most of the empirical rules found for the mesoscale 
phenomena are of a type where unknown complicated 
mechanisms are playing certain roles and the empirical 
rules are only satisfied in an approximate sense. In  this 
case, a better variational formalism will be 

SJ=Sx{ I5(cp-~)'+a(Vtp+c,V,cp)' ] = O  (6) 

where a is a weighting factor instead of a Lagrange 
multiplier. The variational operator should not be applied 
to a. A similar formalism was proposed by Thompson 
(1969). One of the other differences between eq (5) and (6) 
is that the term (V,p+c,V,p) appears in linear form in 
eq (5) and in quadratic form in eq (6). Therefore, the 
Lagrange condition is always satisfied in eq (6),  and the 
constraint is now expressed as 

n,i 

vtcp+C,vz~"O. (7) 

3. THE EULER EQUATION 
In  this article, discussion will be given only for formalism 

(6). Solution of eq (6) is obtained by deriving the Euler 
equation under the assumption that the variation 6~ 
vanishes a t  the boundary, that is, 

@cp)i3=0. ( 8 )  

In the derivation, the commutation formula 

2 t V q = - - z q V t  (9) 

of the finite-difference analog is used. The and q are 
arbitrary variables, V represents V t  or V,, and Z is the 
sum of the variable over the entire grid points. The proof 
of eq (9) is given in Sasaki (19693). 

The Euler equation for eq (6) becomes 

q v - a  -.(V,+czV,)(V, cp+CZVZcp) =o. 
This equation is rewritten in convenient form 

~(cp-~)-aVtV,cp-2~c,VtV,cp-acuc2,V~v,cp=o. (10) 

If At and A x  approach zero, eq (10) becomes a partial 
differential equation of the second order. On the basis of 
the theory of characteristics, eq (10) is a parabolic type. 
However, it is easier to  work with the elliptic type in the 
actual application of this method. The type of equation 
can be changed by adding the terms of the low-pass filter 
at(Vrcp)2 as a frequency iilter and a s ( V z p ) p  as a wave 
number filter to eq (6) ; 

S r J = S C  { I5 (cp- a2 +a(vt(P + CZVX cp) 
n,$ 

+dvtP)2+as(Vzcp)2 1 =o (11) 

where at  and a, are predetermined weights. The Euler 
equation of eq (11) thus becomes 

~(~-~)-(a+at)vtv,cp-2aczvtvzcp- bf~s)c2,v*Vzcp=O, (12) 

and it is an elliptic equation at  the limit A t 4 0  and Ax-0 
since. 

26- (a+%) (a+as)c2Z<O (13) 

if CY, and/or a, are nonzero positive (Courant and Hilbert 
1962). From a practical viewpoint, the elliptic type is 
desirable for problems of map analysis. However, the 
parabolic type obtained by taking a,=O and a,=O may 
be used better for the problem of optimized prediction. 
Since this article only discusses the analysis problems, 
we assume that a,#O and a,#O, although at  and a, may 
be infinitesimal. 

4. LQW-PASS FILTER CHARACTERISTICS 

The characteristics of the low-pass filter are discussed 
for the Euler eq (12). This is similar to those of Sasaki 
( 1 9 7 0 ~ ~  19703). Suppose that the observed and analyzed 
fields are represented by a simple harmonic function 
such as 

where k is the wave number, v is the frequency, and 5 and 
@ are the amplitudes. The ratio r=@/%, which is an 
index of the filtering response, is obtained by substitution 
of eq (14) into eq (12) as follows: 

sin vAt sin kAx and ex=------- Ax et=-- A t  

At the limit At+0 and A x - + O ,  

This result indicates that monotonic damping occurs as 
the frequency v and the wave number k increase. This 
is a favorable characteristic of variational formalism with 
weak constraint. Also, it is interesting to note that the 
a terms of the weak constraint play a role similar to the 
at and a, terms of the low-pass filter. In  other words, 
even if a,=O and a,=O, the result of filtering high fre- 
quencies and high wave numbers wil l  be obtained by the 
a term alone. 

The above favorable result obtained in the limited 
case where At-0 and Ax-0 is impaired if At and A x  are 
finite. Due to the behavior of e t  and e ,  as functions of 
v and k, r increases as v approaches the frequency v, which 
is defined by v,= n / A t ,  or 2n times the Nyquist frequency. 
Similarly, k approaches k, (=*/Ax) as seen from eq (15). 
Also, r decreases monotonically for 

O<V<% or <k< %I 
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and r increases monotonically for 

(19) <v<v, or k m  3 <k<km. 
2 

The condition expressed by eq (18) is desirable but 
that shown by eq (19) is not. The unfavorable character- 
istic (19) can be avoided by smoothing the field of ob- 
served values. Then an iterative procedure is applied t o  
solve eq (12). The iterative procedure will be discussed in 
the next section. Since an iterative method requires the 
condition that the matrix lGl< 1 for all values of v and k,  
the analyzed field will not amplify the small noises of high 
frequencies and high wave numbers in the smoothed ob- 
served field. The initial smoothing of the observed field 
may be accomplished by applying the so-called “Hanning” 
or “Hamming” filter (Blackman and Tukey 1958) one or 
more times. The Hanning filter, for instance, is defined 
in the x and t directions, respectively, as 

(-)’=[( )it ,+( )i-1+2( ) i ] / 4  
and (20) 

(->t=[( ln+1+( In-1+2( In1/4. 

The spectral representation of this filter is (1 +cos kAx)/2 
for the wave number space and (1 + cos vAt)/2 for the 
frequency space. These filtering responses show suppres- 
sion of amplitudes in the neighborhood of Y ,  and k,. 

5. RESIDUAL EQUATION 
The solution of eq (12) may be obtained by a relaxation 

method as a boundary value problem. The boundary con- 
ditions necessary for eq (12) are the values of cp at a closed 
boundary of domain considered on a t-x plane. The neces- 
sary boundary conditions are assumed to be specified. 
Subsitution of the vth guess +dU) for cp in eq (12) gives a 
residual equation 

Zb~p(”)- ( ~ + ~ , ) V , V ~ A C ~ ( ~ ) - ~ ~ C , V ~ V ~ A ~ ‘ ~ ’  

- ( C ~ + ~ ~ ) C ~ V , V , A ( P ( ” ) = R ( ~ )  - (21) 

The Richardson relaxation method is used to make the 
(Y+ 1) th guess 

Elimination of R(v) from these two equations leads to  

The eigenvalue of the amplification matrix G defined as 

(24) Av(v+l) = G A ~ ( u )  

is obtained easily in this case. If AcpCV) is expressed by a 

simple harmonic eihfiut, the operators V,,, V,,, and V,, 
in eq (23) are substituted for by the constants, 
-sin2 vAt/At2, -sin vAt sin kAx/At Ax, and -sin2 kAxJAx2, 
respectively. Therefore, G is given by 

1 2ac, 
At& 

r& (1-2 sin2 vAt)-- sin vAt sin kAx 

The solution will converge, that is, 

when 
G 1 1 .  

This condition will occur if 

2acz Z 2 - s  
AtAx 

6. AUXILIARY TERM OF CONVERGENCE 

The criterion (28) will not be satisfied in areas lacking 
observation where the weight of the observation i; is 
normally taken to be zero. Hence, eq (28) becomes un- 
satisfied. To  avoid this difficulty, one adds an auxiliary 
term G ‘ u ( c p - c p a ) 2  to the functional in eq (11) under the 
conditions 

and 
Z a = o .  . . i f G # 0  

(29) 
G a = C .  . . i f a = o  

where F a  is an interpolation of neighboring T values and 
G is a constant larger than 2cr c,/AtAx. When adding this 

- 

By adding the auxiliary term, the type of equation at  the 
limit At-0 and Ax-+O is not altered, and the low-pass 
filter characteristics remain the same. The convergence is 
now given by: 

and (32) 
2acz ifZ=O E > - - - .  ‘- AtAx 

In  practice, Z a  is taken to be the same value as i;. The 
value of Tu is obtained by averaging the surrounding 
four grid-point values (in the t-s plane, six-point aver- 
age on t-x,y space) of 5 and/or &, if za is already calculated 
and averageable. The above averaging procedure is 
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repeated until all the grid points are filled with 7 or $a ,  

The boundary values are obtained in the same way. The 
value of an observation point 7 is riot changed by this 
procedure. This simple procedure is used in this study, 
although a more sophisticated procedure could produce 
better results. 

7. INTERACTION 

This section deals with the interaction between cp and 
c,. In previous sections, c, was assumed to be prede- 
termined, and the solution was sought for cp only. In this 
section, simultaneous solutions for cp and cz will be in- 
vestigated. For simplicity, we shall assume that observa- 
tions of $ and ’& are available at  all grid points. This 
assumption allows us to drop the Za term from eq (30). A 
variational formalism for the simultaneous solution may 
be obtained by an extension of eq (30) or eq (14) to include 
reasonable constraints of c,; thus 

S J = S  { ~ ( ~ - ~ ) z + + a ( V t c p + c z V ~ c p ) z  
n, i - 

2 
+at (vl(P)2 +a,(V+cp)2 +&- c*> 

+ ~ t ( v t c ~ ) z + ~ s ( v , c * ~ 2  1 =o. (33) 

All terms other than i, p t ,  and ps have been explained. The 
term is the universal constraint used to minimize the 

difference between observed and analyzed fields. The 
p t  and 0, terms play the same roles as the at and Z, terms. 
The c, equation becomes an elliptic type if B t  or p, does not 
vanish at the limit At+O; the equation also filters out un- 
necessary high-frequency oscillations and short waves 
from the analyzed field. 

In this case, c, is assumed to vary with time and space 
just as cp is. Therefore, the Euler equations should be 
derived by taking the variability of cp and c, into consider- 
ation. The Euler equations for eq (33) are 

&-a,> -av, (p. (vt +c,VZ)~-~tvcVtc,-~,v,vzc~=o. (35) 

Equations (34) and (35) are a set of simultaneous non- 
linear equations. It is diacult to inspect their character- 
istics without using a numerical method. For convenience, 
a technique of small parameter expansion is employed to 
reveal the interaction characteristics under certain limited 
conditions. Let us assume that the amplitudes of G, cp, Z,, 
and c, are small compared with their locally constant 
values cp, cp, c,, and 7, and that they can be expanded as 

- - - -  

and 

- - 
where G, Cp, ?,, and Z, are locally constant; $’, cp’, Tl, and 
c: are functions of both time and space and are of the 
order of 1 ;  and e is a nondimensional small parameter 
that is less than 1. In this article, “locally constant” 
means that their derivatives are neglected in differential 
or difference equations. Also, we assume 

Linearized equations can be obtained by substituting 
eq (36) and (37) into eq (34) and (35) and neglecting the 
O($)  terms if E is sufficiently small. Thus the Euler equa- 
tions of the order of E are 

Z((P’-G’) - (a+at)vtVtcp’--ac,VtV6o’- (a+%> 

XC~VzVZ(p’=O (38) 

(39) 

and 
* 
p (c:-al>-ptvtvtc:-~sv,vz~:=o. 

These equations demonstrate the following important 
results: eq (38) is the same as eq (12) and (31) since &=O, 
that is, eq (12) and (31) can be used for the cases where 
a certain interaction between cp and c, exists; cz for eq (12) 
and (31) can be a very smooth value, at  least a locally 
constant value; c, can be determined independently from 
cp. Of course, the above conclusions are applicable only 
if e is sufficiently small. I n  general, E may not be small. 
However, they are useful conclusions to simplify the 
analysis problem. From the above discussion, the impor- 
tance of the p t  and ps terms is apparent. These terms will 
be included in the subsequent discussion. Now, we return 
to the nonlinear Euler eq (34) and (35). If p t  and 0, are 
nonzero values, although they may be small, these non- 
linear equations can be solved as a boundary value problem 
(appendix). 

8. EXTENSION TO TWQ DIMENSIONS 

Consider that organized atmospheric systems are mov- 
ing in an area with variable velocities and intensities. Let 
the velocity components be denoted as c, and c,  in the z 
and y directions, respectively. The approximate equation 

should be satisfied. A finite-difference form of eq (40) is 
written as 

vlcp + cZvz cp+ cUvu cp A 0 (41) 

where the finite-difference formulation defined in eq (3) is 
applied to  V , ,  V,, and V,. The variables cp, c,, and c, are 
assumed to be assigned a t  all grid points; n is the nth time 
level with time increment At;  i is the i th grid point that in- 
creases as 2 increases; j is the j th  grid point number that 
decreases as y increases; and the variables are functions of 
n, i, and j. Naturally, n, i, and j are integers. 

Assuming that c, and c, are determined independently - . .  
cz=’F,+EC,I of cp, we can write the variational equation as a two- 
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dimensional version of eq (33) as 

and the Euler equation of (42) as 

As discussed in section 7,  cz and c, can be analyzed 
separately from the cp analysis. The values of cz and c, 
may be estimated from various data sources. One is, 
naturally, surface network data, and the other is an 
estimation of ZZ and 8, from the velocity of the movement 
of radar echoes. The latter is a direct way to measure 
the velocity of movement, Zz and 'E,. The surface network 
data can also be a source of direct determination d the 
translation velocity if an isolated system passes over a t  
least two surface stations within a reasonably short 
period. 

If a system is not isolated but extends in one direction 
such as a front, we will define the translation velocity as 
a velocity normal to the front. If a system is not well- 
defined , neither isolated thunderstormlike nor frontlike, 
we may use the observed wind components G and v" as 7% 
and E,, respectively. A simple method of determination of 
cZ and c, from 'Zz and 'E, will be used. 

The variational formalism taken for c, and c, is 

The Euler equations for (45) are 

The a d y s i s  of mesonetwork data of severe storms is 
performed in two steps: (1) the determination of cz and 
c,  from eq (46) and (47) and (2) the determination of the 
cp pattern by using the values from eq (43). 

9, APPLICATION TO THE SEVERE STORM GUST 
ANALYSIS OF MAY 31, 1969 

A well-defined gust with peak wind speed of about 70 k t  
swept over the central Oklahoma area in the late evening 
of May 31, 1969. This gust was produced by severe storm 
systems that were moving in a northeasterly direction 
passing over the area about 100 mi west of Oklahoma City 
a t  about 2300 CST. Figure 1 shows a series of the evolution 
of severe storm echo patterns revealed by the WSR-57 
radar located at  the NSSL (National Severe Storms 
Laboratory), ESSA, Norman, Okla. The photographs 

shown in this figure were taken every half hour for the 
2-hr period between 2200 through 2400 CST. Range marks 
are every 20 mi. The rectangular area ABCD is the area 
covered by the analysis of wind fields shown in subsequent 
figures. At 2200 CST, there was a line of well-developed 
severe storm systems (marked by I in fig. 1) that seemed 
to start decaying a t  the time. To the southwest of this 
line of echos, there were two echo systems (marked by 
11, and 11, in fig. 1) that were near each other. They were 
moving to  the northeast with faster speeds than echo sys- 
tems I. About 2230 CST, the echo systems I1 amalgamated 
with I and grew more intense while the echo systems I 
continued to decay as seen from the echo patterns at  
2300-2330 CST. The southern portion of the echo system 
entered area ABCD about 2330 CST. This,produced the 
gust of present interest. A marked feature of that portion 
after 2300 CST is a sharper edge of reflectivity a t  the east 
side. The echo a t  the side nearest the radar is unusually 
clear. It is unlikely that the effect of attenuation can explain 
this clarity. 

Three-hour synoptic surface pressure patterns from 
0000 to 0900 GMT are shown in figure 2. A relatively 
weak cold front associated with the Low located to the 
west of the Great Lakes was moving southeastward. 
Located to the south of the front, near Lawton, Okla., was 
a weak, nearly stationary low-pressure center with the 
central pressure of 996 mb at 0000 GMT. About 6 hr later, 
the low-pressure center amalgamated with the southeast- 
ward-moving cold front and then, weakening slightly, 
moved together with the front. The severe storm system 
that was responsible for producing the gust of our present 
interest seems to have developed between 0300 and 0600 
GMT near the area west of ABCD in figure 2. The three- 
dimensional subsynoptic conditions associated with the 
development of the severe storm system is of interest, and 
an investigation of numerical variational analysis in t ,  2, 
y, z space for the severe storm system development of this 
case is in progress. The discussion of subsynoptic condi- 
tions .\yill await completion of this analysis. 

Figure 3 shows an isochrone analysis of the leading 
edge of the gust front passage over the network stations 
and that of the passage time of the first peak of wind speed. 
The echo pattern a t  2310 CST is also shown in the figure. 
The isochrones seem to reflect the amalgamated double 
structure of systems 11, and IIb. 

The square area indicated by ABCD that covers all 
of the NSSL mesonetwork stations is also used for the 
domain of the analysis. A 16 X 16 grid is placed on ABCD 
as shown in figure 4.  The grid distance is 2.5 mi. The wind 
data obtained from all stations for the 1-hr period 2300 
through 2400 CST are analyzed simultaneously so that 
an analyzed pattern reflects the influences from all stations 
and the entire 1-hr variations. The total number of time 
levels used is 25, and the time increment is 2.5 min. 
Input wind data, direction and speed, is a 5-min running 
average of every minute reading from the cup anemometer 
wind traces. The data were supplied by the NSSL. The 
value at  2302.5 is obtained, for instance, by taking the 
simple arithmetic average of the two adjacent readings 
2302 and 2303. The data at 2305 CST are the data of direct 
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FIGURE l.-Evolut,ion of echo patterns as observed on the WSR-57 radarscope a t  the NSSL at Norman, Okla. ABCD represents the 
area of analysis. 
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FIGURE 3.-Isochrone patterns of arrival times of the leading edge 
of the gust and the first maximum wind speed. 

FIGURE 2.-Surface isobar patterns. Storms developed between 
0300 and 0600 GMT in the vicinity of the analysis area ABCD. 

reading. By using this procedure with the aid of a com- 
puter, data samples were obtained for the analysis a t  
2302.5, 2305, 2307.5, 2310, . . . , 2400 CST for all stations. 

The estimate of ;, and z,, is made from the isochrone 
analysis (fig. 4). The normal component Zn of the velocity 
of the gust front movement is calculated at  various points 
in ABCD from the positions of the front at two successive 
times along the direction normal to  the front. Components 
c z  and ;, are calculated by taking x and y components of 
cn. These data are used to obtain c, and c, after sub- 
stituting ;, and ;,, into eq (46) and (47). Since the gust was 
a well-defined organized line that was not moving with 
the surface wind a t  the location of the front, only z,  
and E,, are used, and the observed wind velocity com- 
ponents and ? are not used to estimate c, and c,. The 
choice of proper weight values was made by non- 
dimensionalizing the weights; 

M 

m, 

P I =  8 /c*' ,  /3; = /31At2/c*2, 
and 

/3:= / 3 s A ~ 2 / ~ * z  

where c* is the characteristic speed (10 kt) of the front 
movement. The ;I, P i ,  and & are taken to be equal in 

98' 37.50 
35.75" + + I  

FIGURE 4.-NSSL mesonetwork stations in 1969 and the grid used 
the calculation. for the analysis. 
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FIGURE 5.-Isogon, radar echo, and isotach patterns in the analysis area on May 31, 1969, at (A) 2305, (B) 2310, (C) 2315, (D) 2320, 
(E) 2325, (F) 2330, (G)  2335, and (H) 2340 CST. 
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FIQURE 5.-Continued. 
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FIGURE 5.-Concluded. 

After analyzed values of cz and c, are obtained, the 
isogon and isotach patterns are analyzed separately. 
First, the wind directions from all stations for the period 
2302.5 through 2400 CST are stored at  the grid points 
nearest to each station. Since all data of wind direction 
indicate that the directions increased monotonically 
from about 160' to  some values less than 360°, the d a -  
culty of non-uniqueness of direction, that is, 10' is equal 
to 370' for instance, did not appear in the calculation. 
Normally, calculation by u and 2, components avoids 
that multiple-value problem, but this case study was 
made on the wind direction data for the above reason. 
The wind direction data were thus used as in eq (43). 
The weights G, at,  and a,  are chosen in the same manner 
as ps. The analyzed isogon patterns cp were displayed 

on a DDSO cathode-ray representation on the CDC 6600 
computer system at the National Center for Atmospheric 
Research, Boulder, Colo. The patterns thus obtained 
are for every 2.5 min for the period 2305, 2307.5, 2310, 
. . . , 2357.5 ST. 

Figure 5 shows the isogon, radar echo, and isotach 
patterns at  5-min intervals between2305 and 2340 CST. Fig- 
ure 5A contains the isogon, radar echo, and isotach patterns 
a t  2305 CST. At that time, the radar echo pattern showed 
the ground echo only. The center of the echo pattern 
is the NSSL at Norman, Okla.; and the circles shown in 
the figure are of 20-mi concentric range. No precipitation 
echo appears in this figure. The isogon pattern (units, 
degrees) and the isotach pattern (units, j{,kt) in figure 5 8  
indicate that a S-SSE wind with a relatively uniform 
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speed of between 15-20 kt  covered the area at  2305 CST. 
It is interesting to note that relatively higher wind 
speed areas (say 20 k t  or higher) are in positive correla- 
tion with the areas of more southerly currents (closer 
to 180'). Figure 5B shows those at  2310 CST. The storm 
systems were still outside area ABCD. However, the 
influence of the storm systems appeared in the wind 
direction to the west. It is interesting to  note that the 
isotach pattern seems to show no disturbance of the 
storm systems at  that time. An interesting question may 
be raised as to why the isogon and isotach patterns did 
not simultaneously reflect the storm systems in their 
environment. The influence was shown in the isogon 
pattern earlier than in the isotach pattern. This feature 
becomes more clearly evident in a comparison of the 
isogon and isotach patterns in figures 5C and 5D. The 
storm systems that produced the gust began to appear 
in the northwest corner of area ABCD a t  2315 CST and 
continued to penetrate into the northern portion of 
ABCD. The gust shown in the isogon pattern (fig. 5B) 
at  2310 CST seemed to move to the northeast, and another 
gust front system was most likely developing at  the 
southern edge of the first gust system, as seen in the 
isogon and isotach patterns at  2320 CST (fig. 5D). 

This second gust front sys tern became a well-defined 
system a t  2325 CST (fig. 5E) as it swept eastward over 
the west half of the central mesonetwork stations. Also, 
the first gust system is seen in these patterns as it was 
moving away from area ABCD. The directions of move- 
ment of these two gust systems are apparently different, 
the first one moving northeastward and the second one 
eastward, or in the east-southeast direction. At 2330 CST 

(fig. SF), the second gust became more intensified, having 
nearly a northerly wind direction and a wind speed reach- 
ing 47 kt  at  station 3A. (Note that the wind speed is a 
5-min running average of wind data read every minute 
from the wind trace and that the peak wind speed should 
be considerably higher than 47 kt.) This intensification is 
primarily due to the intensification of the severe storm 
system 11. However, another severe storm system I11 
was developing to the south of I1 and was moving toward 
it. This third system could have some effect on the in- 
tensification of the second gust system. It is interesting 
to  note that, in the radar pattern at  2330 CST, one iso- 
lated echo, possibly from the second gust front system, 
is shown as a faint dark spot between stations 4B and 
4C, or around the location 1=6-7 and J=7--8. This 
dark spot, not shown in the previous figures, became more 
apparent in the subsequent radar echo patterns at  2335 
and 2340 CST The spot developed into a well-defined 
line running through stations 4C and 5B (or from the 
position 1=8 and J = 8  to the position I=5,  J=11) a t  
2335 CST. I t  then moved to the southeast and is seen in 
the radar echo pattern a t  2340 CST as a dark curved line 
running from position I=9,  J = 9  through I = 5 ,  J=13. 
The leading edge of the precipitation echo followed this 
gust from about 15 mi behind. The two are nearly parallel. 

The gust appearing on the radarscope seems to agree 
very well, as to their locations and evolutions, with the 
gust appearing in the isogon and isotach patterns. 

10. CONCLUDING REMARKS 
The theoretical development of the numerical varia- 

tional analysis method proposed by the author (1958, 
1969a, 1969b) was extended to a case where empirical 
rules are used as the subsidiary conditions in the varia- 
tional formalism. In  such a case, the subsidiary conditions 
are written in a form of approximation. A simple subsidiary 
condition is that a meteorological system moves approxi- 
mately with a prespecified velocity. This condition has 
been used in many weather map analyses as a reliable 
empirical rule. The condition is also used in this study for 
the numerical variational analysis of the severe storm 
gust that swept over the NSSL mesonetwork around 
midnight of May 31, 1969. 

The results of the analysis demonstrate the applica- 
bility of the analysis method and reveal some features of 
the gust. One of the significant features of the gust is that 
the rapid shift of wind direction appeared before the wind 
speed changed as the gust approached. The time lag 
between the appearances of these two parameters is 
several minutes. Presently, the reason for this nature is 
not clear. Another interesting feature is that storm system 
I1 produced a distinct gust front. However, storm 
systems I and I11 seemed not to produce such a distinct 
gust front although system I passed closely by the net- 
work area and system I11 passed over the network area. 
This feature brings up the question as to the mechanism 
in the storm associated with gust production. Also, this 
study seems to suggest the future possibility of using the 
same approach in the problem of designing a surface 
observational network appropriate to the local weather 
phenomena. Based on this study, it is the author's impres- 
sion that the 1969 network density seems to be higher 
than required in some areas while additional stations 
appear to be needed in the northwest and southeast 
sections of ABCD. A study is underway to determine the 
effects on the analysis of removing selected stations from 
the initial field. 

APPENDIX 
The question of the uniqueness of solution of the 

residual eq (34) and (35) relates to the question of 
whether they can be solved as an initial value problem or 
as a boundary value problem. Prediction is naturally an 
initial value problem, and analysis is commonly a bound- 
ary value problem. The approach by which one intends 
to  include time variation terms with the analysis will 
now bring the prediction and analysis close together in 
the residual equations. In  this appendix, we use inductive 
logic to discuss the uniqueness of solution on the basis of 
the theory of characteristics (Courant and Hilbert 1962). 
For convenience, At and Ax are taken to be infinitesimal. 
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Then eq (34) and (35 )  are written as As long as at  least one of at and a, and also at  least one of 
f i t  and p, is a nonzero value, thte characteristic condition 

Solution of eq (34) and (35) may be determined uniquely 
as a boundary value problem if the necessary boundary 

-acz &=O (48) conditions are given. If this numerical variational method 
is used for predicting future patterns, it is better to  solve 
the problem as an initial value problem. In that case, at  

azQ ac, aQ will not be satisfied. 
a t2 atax (or+a,)c2, - -a - - - 
aZQ 

ax2 ax at 

ax ax 

q p - ; ) - ( a + a t )  -- -2acz -- 

and 

and a8 or pc and p, or both may be taken to be zero. 
w - acp aQ aQ aQ a2c, sac, p (cz-c,)-a - --ac, - --pt --+I8 - -=o. (49) 

ax a t  ax ax at2 ax2 A C K N O W L E D G M E N T S  

Let us assume that a characteristic base curve Co does 
exist and is expressed by ((t,x)=O. The variables cp 

and c, and their first derivatives are defined uniquely 
along Co, but the outward derivatives of higher order are 
not uniquely determined. Transforming (t,x) to (5,s) , 
where q is orthogonal to 5,  one can rewrite the derivatives 
as 

and 

Also, one can write similar ones for other derivatives. 
When giving attention to the outward derivatives of the 
second order, a2cp/af2 and a2c,/a52, eq (48) and (49) are 

and 

where Fl and Fz are functions of variables and their deriva- 
tives, other than the outward derivatives of the second 
order. Therefore, the azp/ap and a2c,/a52 are uniquely 
determined if 

A= I IZO 
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